初中数学题库及答案(初一数学易错题100道)

访客2023-09-23 22:24:1546

今天给各位分享初中数学题库及答案的知识,其中也会对初一数学易错题100道进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

初中数学竞赛试题及答案

《初中数学竞赛自招资料 》百度网盘资源免费下载

链接:

?pwd=awxw 提取码: awxw  

初中数学竞赛自招资料|上海自招|竞赛资料|海风讲义|供系统上传|第三批次|第二批次20170525|初中竞赛知识列表.xlsx|中位线及其应用.docx|质数、合数.docx|正弦定理与余弦定理.docx|整数几何.docx|整除.docx|圆的基本性质.docx|有趣的操作问题.docx

请帮忙出些初中的数学题!

初中数学基础知识测试题

学校 姓名 得分

一、填空题(本题共30小题,每小题2分,满分60分)

1、 和 统称为实数.

2、方程 - =1的解为 .

3、不等式组 的解集是 .

4、伍分和贰分的硬币共100枚,值3元2角.若设伍分硬币有x枚,贰分硬币有y枚,则可得方程组 .

5、计算:28x6y2÷7x3y2= .

6、因式分解:x3+x2-y3-y2= .

7、当x 时,分式 有意义;又当x 时,其值为零.

8、计算: + = ;(x2-y2)÷ = .

9、用科学记数法表示:—0.00002008= ;121900000= .

10、 的平方根为 ;- 的立方根为 .

11、计算: - = ;(3+2 )2= .

12、分母有理化: = ; = .

13、一块长8cm,宽6cm的长方形铁片,在四个角各剪去一个边长相等的小正方形,做成一个长方体无盖的盒子,使它的底面积为24 cm2 .若设小正方形边长为x cm,则可得方程为 .

14、如果关于x方程2x2-4x+k=0有两个不相等的实数根,那么k的取值范围是 .

15、若x1、x2是方程2x2+6x—1=0的两个根,则 + = .

16、以 +1和 —1为根的一元二次方程是 .

17、在实数范围内因式分解:3x2-4x-1= .

18、方程x+ =5的解是 .

19、已知正比例函数y=kx,且当x=5时,y=7,那么当x=10时,y= .

20、当k 时,如果反比例函数y= 在它的图象所在的象限内,函数值随x的减小而增大.

21、在直角坐标系中,经过点(-2,1)和(1,-5)的直线的解析式是 .

22、如果k<0,b>0,那么一次函数y=kx+b的图象经过第 象限.

23、如果一个等腰三角形的周长为24cm,那么腰长y(cm)与底长x(cm)之间的函数关系式是 .

24、二次函数y=-2x2+4 x-3的图象的开口向 ;顶点是 .

25、经过点(1,3)、(-1,-7)、(-2,-6)的抛物线的解析式是 .

26、把抛物线y=-3(x-1)2+7向右平移3个单位,向下平移4个单位后,所得到的抛物线的解析式是 .

27、柳营中学某班学生中,有18人14岁,16人15岁,6人16岁,这个班级学生的平均年龄是 岁.

28、当一组数据有8个数从小到大排列时,这组数据的中位数是 .

29、一组数据共有80个数,其中最大的数为168,最小的数为122 .如果在频数分布直方图中的组距为5,则可把这组数据分成 组.

30、样本29、23、30、27、31的标准差是 .

二、填空题(本题共30小题,每小题2分,满分60分)

31、如果两条平行线被第三条直线所截,那么 相等, 互补.

32、命题“两直线平行,同旁内角互补”的题设是 ,

结论是 .

33、若三角形三边长分别是6、11、m,则m的取值范围是 .

34、如果一个多边形的内角和为2520°,那么这个多边形是 边形.

35、等腰三角形的 、 、 互相重合.

36、在△ABC中,若∠A=80°,∠B=50°,则△ABC是 三角形.

37、在Rt△ABC中,∠C=90°,∠A=60°.若AC=5cm,则AB= cm.

38、在Rt△ABC中,∠C=90°, 如果AC=3cm,BC=4cm,那么AB边上的高CD= cm.

39、如果一个平行四边形的两个邻角的差为30°,那么这个平行四边形的较大的一个内角为 (度).

40、两组对边分别 的四边形是平行四边形.

41、在菱形ABCD中,若有一个内角为120°,且较短的一条对角线长12cm,则这菱形的周长为 cm.

42、两条对角线 的平行四边形是正方形.

43、在梯形ABCD中,AD‖BC,若AB=DC,则相等的底角是 .

44、顺次连结菱形的四边的中点所得到的图形是 形.

45、在△ABC中,点D、E分别在AB、AC边上,若DE‖BC,AD=5,AB=9,EC=3,则AC= .

46、在△ABC中,点D、E分别在AB、AC边上,AD=2 cm,DB=4cm,AE=3cm, EC=1 cm,因为 且 ,所以△ABC∽△ADE.

47、△ABC的三条中线AD、BE、CF交于点G.如果△AEG的面积为12平方厘米,那么△ABC的面积为 平方厘米.

48、把一个三角形改成和它相似的三角形,如果边长扩大为原来的10倍,那么面积扩大为原来的 倍.

49、如果∠A为锐角,tgA= ,那么ctgA= .

50、计算:sin30°= ;tg60°= .

51、在Rt△ABC中,∠C=90°.如果sinA= ,那么∠B= (度).

52、如果飞机在离地面5000米的高空俯视地面上一个目标时,俯角为30°,那么飞机离目标的距离为 米.

53、斜坡的坡度为1∶4,斜坡的水平宽度为20m,则斜坡的垂直高度为 m.

54、在半径为10cm的圆中,20°的圆心角所对的弧长为 cm.

55、若两圆半径分别为9cm和4cm,圆心距为5cm,则两圆位置关系为 .

56、若直线AB经过⊙O上一点C,且OC⊥AB,则直线AB是⊙O的 .

57、在△ABC中,如果AB=9cm,BC=4cm,CA=7cm,它的内切圆切AB于点D,那么AD= cm.

58、在Rt△ABC中,∠C=90°.如果AC=5cm,BC=12cm,那么△ABC内切圆的半径为 cm.

59、半径分别为5cm和15cm的两圆相外切,其外公切线的长为 cm,连心线与外公切线所夹的锐角为 (度).

60、任何正多边形都是 对称图形,边数是偶数的正多边形又是 对称图形.

答案

一、1、有理数;无理数.2、y=3 .3、x≤- .4、 .5、4x3 .6、(x-y)(x2+xy+y2+x+y).7、≠- ;=1 .8、 ;(x+y)2 .9、-2.008×10-5;1.219×108 .10、±3;- .11、 ;29+12 .12、 ;. .13、(8-2x)(6-2x)=24(或x2-7x+6=0).14、k<2 .15、6 .16、x2-2 x+1=0 .17、(x- )(x- ).18、x=3 .19、14 .20、>0 .21、y=-2x-3 .22、一、二、四 .23、y=- x+12,0<x<12 .24、下;(1,-1).25、y=2x2+5x-4 .26、y=-3(x-4)2+3 .27、14.7 .28、第4和第5个数的平均数.29、10 .30、2 .

二、31、同位角或内错角;同旁内角.32、两直线平行;同旁内角互补.33、5<m<17 .34、16 . 35、顶角的平分线;底边上的中线;底边上的高.36、等腰.37、10 .38、2.4 .39、105°.40、平行(或相等).41、48 .42、垂直且相等.43、∠A=∠D,∠B=∠C.44、矩.45、 .46、∠DAE=∠CAB, = .47、72 .48、100 .49、 .50、 ; .51、30°.52、10000 .53、5 .54、 π.55、内切.56、切线.57、6 .58、2 .59、10 ;30°.60、轴;中心.

《代数的初步知识》基础测试

一 填空题(本题20分,每题4分):

1.正方形的边长为a cm,若把正方形的每边减少1cm,则减少后正方形的面积为

cm2;

2.a,b,c表示3个有理数,用 a,b,c 表示加法结合律是 ;

3.x的 与y的7倍的差表示为 ;

4.当 时,代数式 的值是 ;

5.方程x-3 =7的解是 .

答案:

1.(a-1)2;

2.a+(b+c)=(a+b)+c;

3. x-7y;

4.1;

5.10.

二 选择题(本题30分,每小题6分):

1.下列各式是代数式的是…………………………………………………………( )

(A)S =πr (B)5>3 (C)3x-2 (D)a<b+c

2.甲数比乙数的 大2,若乙数为y,则甲数可以表示为………………………( )

(A) y+2 (B) y-2 (C)7y+2 (D)7y-2

3.下列各式中,是方程的是………………………………………………………( )

(A)2+5=7 (B)x+8 (C)5x+y=7 (D)ax+b

4.一个三位数,个位数是a,十位数是b,百位数是c,这个三位数可以表示为( )

(A)abc (B)100a+10b+c (C)100abc (D)100c+10b+a

5.某厂一月份产值为a万元,二月份增产了15%,二月份的产值可以表示为( )

(A)(1+15%)× a 万元 (B)15%×a 万元

(C)(1+a)×15% 万元 (D)(1+15%)2 ×a 万元

答案:

1.C;2.A;3.C;4.D;5.A.

三 求下列代数式的值(本题10分,每小题5分):

1.2×x2+x-1 (其中x = );

解:2×x2+x-1

=2× + -1= + -1=0;

2. (其中 ).

解: = = .

四 (本题10分)

如图,等腰梯形中有一个最大的圆,梯形的上底为5cm,下底为7cm,圆的半径为3cm,求图中阴影部分的面积.

解:由已知,梯形的高为6cm,所以梯形的面积S为

= ×( a+b )×h

= ×( 5+7)×6

= 36(cm2).

圆的面积为

(cm2).

所以阴影部分的面积为

(cm2).

五 解下列方程(本题10分,每小题5分):

1.5x-8 = 2 ; 2. x+6 = 21.

解:5x = 10, 解: x = 15,

x = 2 ; x =15 =15 × =25.

六 列方程解应用问题(本题20分,每小题10分):

1.甲乙两人练习赛跑,如果甲让乙先跑10米,甲跑5秒就能追上乙;若甲每秒 跑9米,乙的速度应是多少?

解:设乙的速度是每秒x米,可列方程

(9-x)×5 = 10,

解得 x = 7 (米/秒)

2.买三支铅笔和一支圆珠笔共用去2元零5分,若圆珠笔的售价为1元6角,那么铅笔的售价是多少?

解:设铅笔的售价是x 元,可列方程

3x+1.6 = 2.05,

解得 x = 0.15(元)

《二次根式》基础测试

(一)判断题:(每小题1分,共5分).

1. =2.……( ) 2. 是二次根式.……………( )

3. = =13-12=1.( )4. , , 是同类二次根式.……( )

5. 的有理化因式为 .…………( )【答案】1.√;2.×;3.×;4.√;5.×.

(二)填空题:(每小题2分,共20分)

6.等式 =1-x成立的条件是_____________.【答案】x≤1.

7.当x____________时,二次根式 有意义.【提示】二次根式 有意义的条件是什么?a≥0.【答案】≥ .

8.比较大小: -2______2- .【提示】∵ ,∴ , .【答案】<.

9.计算: 等于__________.【提示】(3 )2-( )2=?【答案】2 .

10.计算: • =______________.【答案】 .

11.实数a、b在数轴上对应点的位置如图所示: a o b 则3a- =______________.

【提示】从数轴上看出a、b是什么数? a<0,b>0. 3a-4b是正数还是负数?

3a-4b<0. 【答案】6a-4b.

12.若 + =0,则x=___________,y=_________________.

【提示】 和 各表示什么?[x-8和y-2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x-8=0,y-2=0.]【答案】8,2.

13.3-2 的有理化因式是____________.

【提示】(3-2 )(3+2 )=-11.【答案】3+2 .

14.当 <x<1时, - =______________.

【提示】x2-2x+1=( )2; -x+x2=( )2.[x-1; -x.]当 <x<1时,x-1与 -x各是正数还是负数?[x-1是负数, -x也是负数.]【答案】 -2x.

15.若最简二次根式 与 是同类二次根式,则a=_____________,

b=______________.

【提示】二次根式的根指数是多少?[3b-1=2.]a+2与4b-a有什么关系时,两式是同类二次根式?[a+2=4b-a.]

【答案】1,1.

(三)选择题:(每小题3分,共15分)

16.下列变形中,正确的是………( )(A)(2 )2=2×3=6 (B) =-

(C) = (D) = 【答案】D.

【点评】本题考查二次根式的性质.注意(B)不正确是因为 =|- |= ;(C)不正确是因为没有公式 = .

17.下列各式中,一定成立的是……( )(A) =a+b (B) =a2+1

(C) = • (D) = 【答案】B.

【点评】本题考查二次根式的性质成立的条件.(A)不正确是因为a+b不一定非负,(C)要成立必须a≥1,(D)要成立必须a≥0,b>0.

18.若式子 - +1有意义,则x的取值范围是………………………( )

(A)x≥ (B)x≤ (C)x= (D)以上都不对

【提示】要使式子有意义,必须

【答案】C.

19.当a<0,b<0时,把 化为最简二次根式,得…………………………………( )

(A) (B)- (C)- (D)

【提示】 = = .【答案】B.

【点评】本题考查性质 =|a|和分母有理化.注意(A)错误的原因是运用性质时没有考虑数.

20.当a<0时,化简|2a- |的结果是………( )(A)a (B)-a (C)3a (D)-3a

【提示】先化简 ,∵ a<0,∴ =-a.再化简|2a- |=|3a|.【答案】D.

(四)在实数范围内因式分解:(每小题4分,共8分)

21.2x2-4;【提示】先提取2,再用平方差公式.【答案】2(x+ )(x- ).

22.x4-2x2-3.【提示】先将x2看成整体,利用x2+px+q=(x+a)(x+b)其中a+b=p,ab=q分解.再用平方差公式分解x2-3.【答案】(x2+1)(x+ )(x- ).

(五)计算:(每小题5分,共20分)

23.( - )-( - );

【提示】先分别把每一个二次根式化成最简二次根式,再合并同类二次根式.【答案】 .

24.(5 + - )÷ ;

【解】原式=(20 +2 - )× =20 × +2 × - ×

=20+2- × =22-2 .

25. + -4 +2( -1)0;【解】原式=5 +2( -1)-4× +2×1

=5 +2 -2-2 +2=5 .

26.( - +2 + )÷ .

【提示】本题先将除法转化为乘法,用分配律乘开后,再化简.

【解】原式=( - +2 + )•

= • - • +2 • + • = - +2+ =a2+a- +2.

【点评】本题如果先将括号内各项化简,利用分配律乘开后还要化简,比较繁琐.

(六)求值:(每小题6分,共18分)

27.已知a= ,b= ,求 - 的值.

【提示】先将二次根式化简,再代入求值.

【解】原式= = = .

当a= ,b= 时,原式= =2.

【点评】如果直接把a、b的值代入计算,那么运算过程较复杂,且易出现计算错误.

28.已知x= ,求x2-x+ 的值.

【提示】本题应先将x化简后,再代入求值.

【解】∵ x= = = .

∴ x2-x+ =( +2)2-( +2)+ =5+4 +4- -2+ =7+4 .

【点评】若能注意到x-2= ,从而(x-2)2=5,我们也可将x2-x+ 化成关于

x-2的二次三项式,得如下解法:

∵ x2-x+ =(x-2)2+3(x-2)+2+ =( )2+3 +2+ =7+4 .

显然运算便捷,但对式的恒等变形要求甚高.

29.已知 + =0,求(x+y)x的值.

【提示】 , 都是算术平方根,因此,它们都是非负数,两个非负数的和等于0有什么结论?

【解】∵ ≥0, ≥0,

而 + =0,

∴ 解得 ∴ (x+y)x=(2+1)2=9.

(七)解答题:

30.(7分)已知直角三角形斜边长为(2 + )cm,一直角边长为( +2 )cm,求这个直角三角形的面积.

【提示】本题求直角三角形的面积只需求什么?[另一条直角边.]如何求?[利用勾股定理.]

【解】在直角三角形中,根据勾股定理:

另一条直角边长为: =3(cm).

∴ 直角三角形的面积为:

S= ×3×( )= (cm2)

答:这个直角三角形的面积为( )cm2.

31.(7分)已知|1-x|- =2x-5,求x的取值范围.

【提示】由已知得|1-x|-|x-4|=2x-5.此式在何时成立?[1-x≤0且x-4≤0.]

【解】由已知,等式的左边=|1-x|- =|1-x|-|x-4 右边=2x-5.

只有|1-x|=x-1,|x-4|=4-x时,左边=右边.这时 解得1≤x≤4.∴ x的取值范围是1≤x≤4.

二元一次方程》基础测试

(一)填空题(每空2分,共26分):

1.已知二元一次方程 =0,用含y 的代数式表示x,则x=_________;

当y=-2时,x=___ ____.【提示】把y 作为已知数,求解x.【答案】x= ;x= .

2.在(1) ,(2) ,(3) 这三组数值中,_____是方程组x-3y=9的解,______是方程2 x+y=4的解,______是方程组 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.

3.已知 ,是方程 x+2 my+7=0的解,则m=_______.【提示】把 代入方程,求m.【答案】- .

4.若方程组 的解是 ,则a=__,b=_.【提示】将 代入 中,原方程组转化为关于a、b 的二元一次方程组,再解之.【答案】a=-5,b=3.

5.已知等式y=kx+b,当x=2时,y=-2;当x=- 时,y=3,则k=____,b=____.

【提示】把x、y 的对应值代入,得关于k、b 的二元一次方程组.

【答案】k=-2,b=2.【点评】通过建立方程组求解待定系数,是常用的方法.

6.若|3a+4b-c|+ (c-2 b)2=0,则a∶b∶c=_________.

【提示】由非负数的性质,得3 a+4 b-c=0,且c-2b=0.再用含b 的代数式表示a、c,从而求出a、b、c 的值.【答案】a=- b,c=2b;a∶b∶c=-2∶3∶6.

【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法.

7.当m=_______时,方程x+2y=2,2x+y=7,mx-y=0有公共解.

【提示】先解方程组 ,将求得的x、y 的值代入方程mx-y=0,或解方程组

【答案】 ,m=- .【点评】“公共解”是建立方程组的依据.

8.一个三位数,若百位上的数为x,十位上的数为y,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.

【提示】将各数位上的数乘相应的位数,再求和.

【答案】100 x+10 y+2(x-y).

(二)选择题(每小题2分,共16分):

9.已知下列方程组:(1) ,(2) ,(3) ,(4) ,

其中属于二元一次方程组的个数为………………………………………………( )

(A)1 (B)2 (C)3 (D)4

【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B.

10.已知2 xb+5y3a与-4 x2ay2-4b是同类项,则ba的值为………………………( )

(A)2 (B)-2 (C)1 (D)-1

【提示】由同类项定义,得 ,解得 ,所以ba=(-1)2=1.【答案】C.

11.已知方程组 的解是 ,那么m、n 的值为……( )

(A) (B) (C) (D)

【提示】将 代入方程组,得关于m、n 的二元一次方程组解之.【答案】D.

12.三元一次方程组 的解是…………………………………………( )

(A) (B) (C) (D)

【提示】把三个方程的两边分别相加,得x+y+z=6或将选项逐一代入方程组验证,由

x+y=1知(B)、(D)均错误;再由y+z=5,排除(C),故(A)正确,前一种解法称之直接法;后一种解法称之逆推验证法.【答案】A.

【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍.

13.若方程组 的解x、y 的值相等,则a 的值为……………( )

(A)-4 (B)4 (C)2 (D)1

【提示】把x=y 代入4x+3y=14,解得x=y=2,再代入含a 的方程.【答案】C.

14.若关于x、y的方程组 的解满足方程2x+3y=6,那么k的值为( )

(A)- (B) (C)- (D)-

【提示】把k 看作已知常数,求出x、y 的值,再把x、y 的值代入2 x+3 y=6,求出k.【答案】B.

15.若方程y=kx+b当x 与y 互为相反数时,b 比k 少1,且x= ,则k、b的值分别是…………( )

(A)2,1 (B) , (C)-2,1 (D) ,- 【提示】由已知x= ,y=- ,可得 【答案】D.

16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )

(A) (B) (C) (D)

【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C.

(三)解下列方程组(每小题4分,共20分):

17. 【提示】用加减消元法先消去x.【答案】

18. 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x.【答案】

19. 【提示】由第一个方程得x= y,代入整理后的第二个方程;或由第一个方程,设x=2 k,y=5 k,代入另一个方程求k 值.【答案】

20. (a、b为非零常数)

【提示】将两个方程左、右两边分别相加,得x+y=2a ①,把①分别与两个方程联立求解.

【答案】

【点评】迭加消元,是未知数系轮换方程组的常用解法.

21.

【提示】将第一个方程分别与另外两个方程联立,用加法消去y.

【答案】

【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径.

(四)解答题(每小题6分,共18分):

22.已知方程组 的解x、y 的和为12,求n 的值.

【提示】解已知方程组,用n 的代数式表示x、y,再代入 x+y=12.

【答案】n=14.

23.已知方程组 与 的解相同,求a2+2ab+b2 的值.

【提示】先解方程组 求得x、y,再代入方程组 求a、b.

【答案】 .

【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.

24.已知代数式x2+ax+b当x=1和x=-3时的值分别为0和14,求当x=3时代数式的值.

【提示】由题意得关于a、b 的方程组.求出a、b 写出这个代数式,再求当x=3时它的值.

【答案】5.

【点评】本例在用待定系数法求出a、b 的值后,应写出这个代数式,因为它是求值的关键步骤.

(五)列方程组解应用问题(每1小题10分,共20分):

25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.

【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组

【答案】x=280,y=200.

26.A、B两地相距20千米,甲、乙两人分别从A、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度.

【提示】由题意,相遇前甲走了2小时,及“当甲回到A地时,乙离A地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则

【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.

《分式》基础测试

一 填空题(每小题2分,共10分):

1.已知v=v0+at(a不为零),则t= ;

2.关于x的方程mx=a (m 的解为 ;

3.方程 的根是 ;

4.如果-3 是分式方程 的增根,则a= ;

5.一汽车在a小时内走x千米,用同样的速度,b分钟可以走 千米.

答案:

1. ;2. ;3. ;4.3;5. .

二 选择题(每小题3分,共12分):

1.已知 =2,用含x的代数式表示y,得……………………………………( )

(A)y=2x+8 (B)y=2x+10 (C)y=2x-8 (D)y=2x-10

2.下列关于x的方程,其中不是分式方程的是……………………………………( )

(A) (B)

(C) (D)

3.一件工程甲单独做a小时完成,乙单独做b小时完成,甲、乙二人合作完成此项工作需要的小时数是………………………………………………………………………( )

(A)a+b (B) (C) (D)

4.解关于x的方程(m2-1)x=m2-m-2 (m2≠1) 的解应表示为…………( )

(A)x= (B)x=

(C)x= (D)以上答案都不对

答案:

1. D;2.C;3.D;4.B.

三 解下列方程(每小题8分,共32分):

1. ; 2. ;

解: , 解: ,

, ,

, ,

, ,

, ,

. .

经检验, =1是原方程的根. 经检验, =2是原方程的增根.

3. ;

解:去分母,得 ,

整理方程,得

经检验, =2是原方程的根.

4. .

解:整理方程,得

去分母,得

经检验, 是原方程的根.

四 解下列关于x的方程(1、2每小题7分,3小题8分,共22分):

1. 2ax-(3a-4)=4x+3a+6;

解:整理,得

2ax-4x=3a+6+3a-4,

(2a-4)x=6a+2,

(a-2)x=3a+1,

当a≠2时,方程的根为

当a=2时,3a+1≠0,

所以原方程无解;

2.m2 (x-n)=n2 (x-m) (m2≠n2);

解:整理,得

m2 x-m2 n=n2 x-n2m,

移项,得

(m2-n2 )x=m2 n-n2m,

因为m2≠n2 ,所以m2-n2≠0,则方程的根为

x= ;

3. .

解:去分母,得

因为 所以方程的根是

x= .

快累死我了!!希望能拿下这200分!!呵呵~*~

如果数量不够,再告诉我,我再给你多打一些!!!

帮忙找些初中数学应用题

1、黄先生、蓝先生和白先生一起吃午饭。一位系的是黄领带,一位是蓝领带,一位是白领带。

“你们注意到没有,”系蓝领带的先生说,“虽然我们领带的颜色正好是我们三个人的姓,但我们当中没有一个人的领带颜色与他自己的姓相同?”

“啊!你说得对极了!”黄先生惊呼道。请问这三位先生的领带各是什么颜色?

解:黄先生系的是白领带。

白先生系的是蓝领带。

蓝先生系的是黄领带。

黄先生不可能系黄领带,因为这样他的领带颜色就与他的姓相同了。他也不可能系蓝领带,因为这种颜色的领带已由向他提出问题的那位先生系着。所以黄先生系的必定是白领带。

这样,余下的蓝领带和黄领带,便分别由白先生和蓝先生所系了

2、把1600棵花生分给100只猴子,不管怎么分,至少有4只猴子得到的花生一样多。你能说明其中的道理吗?

解:抽屉原理

100只猴子

3只1组

得33组余1

第一组每只猴子得0棵花生

第二组每只猴子得1棵花生

第三组每只猴子得2棵花生

第四组每只猴子得3棵花生

.........

第三十三组每只猴子得32棵花生

这时剩下1只猴 16棵花生

所以无论怎么分至少有4只猴子得到的花生一样多

3、一辆车走一段路程去时每小时60千米,回时40千米每小时.问来回平均速度.(不是50)

解:设距离L

去花费的时间:L/60

来花费的时间:L/40

总共时间=L/60+L/40=5/120

总共距离=2L

所以,平均速度=2L/(5/120L)=48 千米/小时

4、有几个人见面,每个人都要握一次手,不重复.现在知道握拉136次手问有几个人.

解:设x人,不和自己握手,所以,每个人和(x-1)人握手,彼此之间只握一次手,所以有一个1/2的该年

x(x-1)/2=136

x^2 - x -272=0

(x-17)(x+16)=0

x=17,x=-16舍去

答案 有17个人

5、有4个1米长的绳子分别围成圆,正三角形,正方形,正5边形,问面积从大到小排列.

解:圆周长=2*3.14*半径,半径=1/6.28,面积=3.14*半径平方 = 3.14/(6.28*6.28) = 1/12.56 =0.080

正三角形周长=3边长,边长=1/3,面积=根号3 /4 * 边长平方 = 0.0475

正方形周长=4边长,边长=0.25,面积=边长平方=0.0625

正五边形周长=5边长,边长=0.2,面积=(5/2)*边长平方*sin72 = 2.5*0.04* 0.95 = 0.095

答案 正五边形,圆,正方形,正三角形

6、排队,前3个初一的,4-6初二的,7-9初三的.然后再回来循环排,问第2007个人是初几?

解:等于9个一道轮回,2007/9=223,余数为0

所以第2007个,是初三的

7、有人在一本书上要撕几个重要的页.他撕拉21页,42页,84页,85页,151页,159页,160页,180页.问他撕拉几张?

解:斯拉了7张 因为84和85为正反面。

8、有一群蜜蜂,其中落在杜鹃花上,落在栀子花上,数目为这两者差数3倍的蜜蜂飞向一个树枝搭成的棚架,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去。试问:共有多少只蜜蜂?

解:15只

设总数为x

1/3*x+1/5*x+3(1/3-1/5)x+1=x

1/3*x+1/5*x+3*(2/15)x+1=x

(1/3+1/5+2/5)x+1=x

14/15*x+1=x

1/15*x=1

x=15

花园里有一群蜜蜂,其中五分之一(3只)落在杜鹃花上,三分之一(5只)落在栀子花上,而这两批蜜蜂相差数的三倍(6只)的蜜蜂飞向月季花,最后剩下一只蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去。

9、一根竹子,原有一丈,虫伤有病,一阵风将竹子折断,其竹子梢恰好抵地,抵地处离原长竹子处3尺远,问原处还有多高的竹子?

已知:(一丈=10尺).

解:设原处还有x尺,折断为(10-x)尺

立着的和地面及折断的构成直角三角形

勾股定理

x^2+3^2=(10-x)^2

x=4.55

原处还有4.55尺的竹子

10、有一位农民遇见魔鬼,魔鬼说:"我有一个主意,可以让你发财!只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数

解:设最初钱数为x

2[2(2x-a)-a]-a=0

解方程得x=7a/8

11、从两块重量为12千克和8千克,并且含铜量不同的合金上切下一样重的两块,把切下的每块与另一块剩下的合金一起熔炼,炼后两块含铜的百分数相同,求所切下的合金重量?

解:设两块的含铜量分别为m和n 设切下的质量为x

则有[(12-x)m+xn]/12=[(8-x)n+xm]/8 可以直接解得x=4.8

12、有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天?

解:设水库总水量为x 一天的进水量和出水量分别为m和n

则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)]

可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天

13、某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?

解:设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个 平均x+2个 (利用改变量来计算)丙班:-2+n=(x+2)-x

甲班:+2-m=(x+2)-(x+5) 可以得出 m=5 n=4

14、把1,2,3,4,……,1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数?

解:第一圈划数是只留3k+1的数 第二次可以将所有数都变为3k+1的形式 再来分析k第二次则只留k为3p+2的数 再分析p 一直类推 可得最回一个数为1987

15、两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

解:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯•诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。

冯•诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

16、有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”

正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。

在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。

如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

解: 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。

既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。

这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

17、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?

怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

解: 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。

怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。

逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。

风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

18、《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

19、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

答案:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

20、数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=x=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=x=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。

把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。

答案:663

15道初中数学应用题

1、一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少?

2、某公司开发出一种新产品,这一产品2001年为公司获得100万元的利润,以后每年生产这一产品获得的利润以相同的增长率增长,已知2003年获得的利润比2002年增长了24万元,求每年获得的利润的增长率.

3、某个体户用50000元资金经商.在第一年中获得一定利润,已知这50000元资金加上第一年的利润一起在第二年共获得利润2612.5元,而且第二年的利润比第一年高0.5个百分点.问:第一年的利润率是多少?

4、某种商品以8元购进,若按每件10元售出,每天可销售200件,现采用提高售价,减少进货量的办法来增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.

(1)当售价提高多少元时,每天利润为700元?

(2)设售价为x元,利润为y元,请你探究售价为多少元时,利润最大,最大利润是多少?

5、某商场6月份的利润是2400元,经过两个月的增长,8月份的利润达到4800元,已知8月份的增长率是7月份的1.5倍,求7月份的增长率.

6、有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要原料和生产的利润分别为:磷酸盐4吨,硝酸盐18吨,利润10000元或磷酸盐1吨,硝酸盐15吨,利润5000元,工厂现有库存磷酸盐10吨,硝酸盐66吨,应生产甲、乙种肥料各多少车皮可获最大利润?

7、某商场计划销售一批运动衣后可获总利润12000元.在进行市场调查后,为了促销降低了定价,使得每套运动衣少获利润10元,结果销售比计划增加了400套,总利润比计划多得了4000元.问实际销售运动衣多少套每套运动衣实际利润多少元?

8、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?

9、某种商品的利润是销售额的25%,设销售额是x(万元),利润是y(万元).

(1)写y与x的函数关系式;

(2)画出函数图象;

(3)若要使利润达到50万元,则销售额应是多少万元?

10、家家乐超市销售某种品牌的纯牛奶,已知进价为每箱45元.市场调查发现:若每箱以60元销售,平均每天可销售60箱,价格每降低1元,平均每天可多销售20箱,设每箱降价x元(x为正整数).

(1)请写出每天利润y(元)与x(元)之间的函数关系;

(2)设某天的利润9500元,此利润是否为每天的最大利润?请说明理由;

(3)请分析售价在什么范围内每天的利润不低于9400元?

11、某商场将进货价为30元的书包以40元售出,平均每月能售出600个.调查表明:这种书包的售价每上涨1元,其销售量就减少10个.

(1)请写出每月售出书包利润y(元)与每个书包涨价x(元)间的函数关系式;

(2)设每月的利润为10 000元,此利润是否为该月的最大利润,请说明理由;

(3)请分析并回答售价在什么范围内商家获得的月利润不低于6000元?

12、某商场将进货价为30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个.

(1)为了使平均每月有10000元的销售利润,这种书包的售价应定为多少元?

(2)10000元的利润是否为最大利润?如果是,请说明理由:如果不是,请求出最大利润,并指出此时书包的售价为多少元?

(3)请分析并回答售价在什么范围内商家就可以获得利润.

13、某超市计划上两个新项目:

项目一:销售A种商品,所获得利润y(万元)与投资金额x(万元)之间存在正比例函数关系:y=kx.当投资5万元时,可获得利润2万元;

项目二:销售B种商品,所获得利润y(万元)与投资金额x(万元)之间存在二次函数关系:y=ax2+bx.当投资4万元时,可获得利润3.2万元;当投资2万元时,可获得利润2.4万元.

(1)请分别求出上述的正比例函数表达式和二次函数表达式;

(2)如果超市同时对A、B两种商品共投资12万元,请你设计一个能获得最大利润的投资方案,并求出按此方案获得的最大利润是多少?

14、某小型加工厂的某种产品按质量分为10个档次,加工第一档次(即最低档次)的产品一天生产38件,每件利润5元,每提高一个档次,利润每件增加1元.

(1)当产品质量是第4档次时,提高了几档?每件利润是多少元?

(2)由于加工工序不同,此产品每提高一个档次,一天产量减少2件,若加工第x档的产品一天的总利润为y元.(其中x为正整数,且1≤x≤10).求出y与x的函数关系式.

(3)若加工某档次产品一天的总利润为280元,该工厂加工的是第几档次的产品?

(4)这个加工厂一天的利润能达到320元吗?为什么?

15、某超市销售某种品牌的纯牛奶,已知进价为每箱45元.市场调查发现:若每箱以60元销售,平均每天可销售40箱,价格每降低1元,平均每天多销售20箱,但销售价不能低于48元,设每箱x元(x为正整数)

(1)写出平均每天销售利利润y(元)与x(元)之间的函数关系式及自变量x的取值范围;

(2)设某天的利润为1400元,此利润是否为一天的最大利润,最大利润是多少?

(3)请分析回答售价在什么范围商家获得的日利润不低于1040元.显示解析

16、某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.

(1)请写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式;

(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?

(3)请回答客房定价在什么范围内宾馆就可获得利润?

17、某雪糕厂由于季节性因素,一年之中产品销售有旺季和淡季,当某月产品无利润时就停产.经调查分析,该厂每月获得的利润y(万元)和月份x之间满足函数关系式y=-x2+ax+b,已知3月份、4月份的利润分别为9万元、16万元.

问:(1)该厂每月获得的利润y(万元)和月份x之间的函数关系式.

(2)该厂在第几月份获得最大利润?最大利润为多少?

(3)该厂一年中应停产的是哪几个月份?通过计算说明理由.

不好意思哦,,超了。。那我也不删了。。。多学点还是有好处的嘛。。。。

数学初中测试题及答案

数学初中测试题及答案 篇1

一、填空题。(28分)

1.三峡水库总库容39300000000立方米,把这个数改写成“亿”作单位的数是( )。

2.79 的分数单位是( ),再增加( )个这样的单位正好是最小的质数。

3.在72.5%,79 ,0.7255,0.725 中,最大的数是( ),最小的数是 ( )。

4.把3米长的绳子平均分成8段,每段是全长的( ),每段长( )。

5.3 ÷( )=9:( )= =0.375=( )% (每空0.5分)

6.饮料厂从一批产品中抽查了40瓶饮料,其中8瓶不合格,合格率是( ) 。

7.0.3公顷=( )米2 1800 厘米3 =( )分米3

2.16米 =( )厘米 3060克=( )千克

8.第30届奥运会于2012年在英国伦敦举办,这一年的第一季度有( )天。

9.汽车4小时行360千米,路程与时间的比是( ),比值是( )。

10.在比例尺是1∶15000000的地图上,图上3厘米表示实际距离( )千米。

11.一枝钢笔的单价是a元,买6枝这样的钢笔需要( )元。

12.有一张长48厘米,宽36厘米的长方形纸,如果要裁成若干同样大小的正方形而无剩余,裁成的小正方形的边长最大是( )厘米。

13.学校有8名教师进行象棋比赛,如果每2名教师之间都进行一场比赛,一共要比赛( )场。

14.如右图,如果平行四边形的面积是8平方米,

那么圆的面积是( )平方米。

15.一个正方体的底面积是36 厘米 2,这个正方体的体积是( )立方厘米。

16.一个圆柱和一个圆锥的体积相等,底面积也相等,圆柱的高是1.2米,圆锥的高是( )米。

17.找出规律,填一填。

△□○☆△□○☆△□○☆△□○☆…… 第33个图形是( )。

18.右图为学校、书店和医院的平面图。

在图上,学校的位置是(7,1),医院

的位置是( , )。以学校为观

测点,书店的位置是( 偏 )( °)的方向上。

19. 在一个盒子里装了5个白球和5个黑球,球除颜色外完全相同。从中任意摸出一个球,摸到白球的可能性是( )( ) (1分)。

答案:

1.(393亿)。 2.(1/9),(11) 3.( 79 ),( 72.5%)。

4.(1/8),(3/8米 )。 5.(8),(24),(6) , 37.5% 。 6. (80%) 。

7.(3000 ), (1.8),(216),( 3.06). ⑧ 91; ⑨90∶1、90;

⑩450 ⑾6a; ⑿12; ⒀28; ⒁12.56; ⒂216; ⒃3.6;

⒄△; ⒅2,4、东偏北,45; ⒆1/2 。

数学初中测试题及答案 篇2

解答题

1.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

1.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

填空题

2.已知9x2-6xy+k是完全平方式,则k的值是________.

3.9a2+(________)+25b2=(3a-5b)2

4.-4x2+4xy+(_______)=-(_______).

5.已知a2+14a+49=25,则a的值是_________.

答案:

2.y23.-30ab 4.-y2;2x-y 5.-2或-12

选择题

6.已知y2+my+16是完全平方式,则m的.值是( )

A.8 B.4 C.±8 D.±4

7.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

8.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

9.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

6.C 7.D8.B9.D

数学初中测试题及答案 篇4

初二数学下册试题:第14章达标测试题

一、选择题(每小题3分,共30分)

1.当分式|x|-3x+3 的值为零时,x的值为 ()

A、0 B、 3 C、-3 D、±3

2.化简m2-3m9-m2 的结果是()

A、mm+3B、-mm+3 C、mm-3 D、m3-m

3.下列各式正确的是()

A、-x+y-x-y = x-yx+y B、-x+yx-y = -x-yx-y

C、-x+y-x-y =x+yx-yD、-x+y-x-y = -x-yx+y

4.如果把分式x+2yx 中的x和y都扩大10倍,那么分式的值()

A.扩大10倍 B、缩小10倍C、扩大2倍D、不变

5.计算(x-y )2 等于 ()

A、x2-yB、x2yC、-x2y2D、x2y2

6、化简a2a-1 -a-1的结果为()

A.2a-1a-1B、-1a-1C、1a-1D、2

7、把分式x2-25x2-10x+25 约分得到的结果是()

A、x+5x-5B、x-5x+5C、1 D、110x

8、分式1x2-1 有意义的条件是 ()

A、x≠1B、x≠-1C、x≠±1 D、x≠0

9、已知1 x 2 ,则分式| x-2|x-2 -|x-1|x-1 + |x|x 的值为 ()

A、2B、 1C、0 D、-1

10、一项工程,甲单独做需要x天完成,乙单独做需要y天完成,则甲、乙合做需几天完成 ()

A、 x+y B、x+yxyC、xyx+yD、x+y2

二、填空题(每小题3分,共15分)

11.当x=_________时,分式x+1x-1 无意义。

12.若代数式x-1x2+1 的值等于0,则x=_____________。

13、分式34xy ,12x-2y ,23x2-3xy 的最简公分母是_______________

14、已知a-b=5 ,ab=-3 ,则1a -1b =______________

15、约分 3m2n3(x2-1)9mn2(1-x) = ______________________。

三、解答题(共55分)

16、把下列各式约分(10分)

(1)4a2b330ab2 (2) m2-2m+11-m2 (3)(a-b)(b-a)3

17.把下列各式通分(10分)

(1)z3x2y2 ,y5x2z2 ,x4y2z2 (2)x+55x-20 ,5x2-8x+16 ,x4-x

18、计算(16分)

(1) 22a+3 +33-2a +124a2-9(2)1-a-ba-2b ÷a2-b2a2-4ab+4b2

(3)x+1-x2x-1(4) 2x+4x2-4x+4 ÷x+22x-4 ÷1x2-4

19、化简(12分)

(1) 2x+4x2-4x+4 ÷x+22x-4 ?(x2-4)(2) (2xx2-4 -1x-2 )?x+2x-1

(3)2a+1 -a-2a2-1 ÷a2-2aa2-2a+1

20.阅读材料(7分)

因为11×3 =12 (1-13 )13×5 =12 (13 -15 )

15×7 =12 (15 -17 )…117×19 =12 (117 -119 )

所以11×3+ 13×5+ 15×7+ … + 117×19

= 12 (1-13 )+ 12 (13 -15 )+ 12 (15 -17 ) + … + 12 (117 -119 )

= 12 (1-119 )

= 919

解答下列问题:

(1)在和式11×3+ 13×5+ 15×7+ …中的第5项为_______________,第n项为___________________

(2)由12×4 +14×6 +16×8 +…式中的第n项为____________。

(3)从以上材料中得到启发,请你计算。

1(x-1)(x-2) +1(x-2)(x-3) +1(x-3)(x-4) +…1(x-99)(x-100)

求初中数学计算题400道(整式、不等式(组)、分式、分式方程、二次根式)要答案

469×12+1492

405×(3213-3189)

5000-56×23

125×(97-81)

6942+480÷3

304×32-154

20+80÷4-20=

100÷(32-30)×0=

25×4-12×5=

70×〔(42-42)÷18〕=

75×65+75×35=

1、89+124+11+26+48

2、875-147-23

3.25×125×40×8

4、147×8+8×53

5、125×64

6、0.9+1.08+0.92+0.1

①89+124+11+26+48

②875-147-23

③147×8+8×53

④125×64

1.280+840÷24×5

2.85×(95-1440÷24)

3.58870÷(105+20×2)

4.80400-(4300+870÷15)

5.1437×27+27×56

6.81432÷(13×52+78)

7.125×(33-1)

8.37.4-(8.6+7.24-6.6)

(1)156×107-7729

(2)37.85-(7.85+6.4)

(3)287×5+96990÷318

(4)1554÷[(72-58)×3]

2800÷ 100+789

(947-599)+76×64

1.36×(913-276÷23)

2.(93+25×21)×9

3.507÷13×63+498

4.723-(521+504)÷25

5.384÷12+23×371

6.(39-21)×(396÷6)

(1)156×[(17.7-7.2)÷3]

(2)[37.85-(7.85+6.4)] ×30

(3)28×(5+969.9÷318)

(4)81÷[(72-54)×9]

57×12-560÷35

848-640÷16×12

960÷(1500-32×45)

[192-(54+38)]×67

138×25×4

(13×125)×(3×8)

(12+24+80)×50

704×25

25×32×125 32×(25+125)

178×101-178

84×36+64×84

75×99+2×75

83×102-83×2 98×199

123×18-123×3+85×123

50×(34×4)×3

25×(24+16)

178×99+178

79×42+79+79×57

7300÷25÷4

8100÷4÷75

75×27+75×2 5

31×870+13×310

4×(25×65+25×28)

138×25×4

(13×125)×(3×8)

(12+24+80)×50

25×32×125

32×(25+125)

102×76+ 58×98

178×101-178

84×36+64×84

75×99+2×75

83×102-83×2

98×199

123×18-123×3+85×123

50×(34×4)×3

25×(24+16)

1)36+59+41+54

(2)23×7+23×3

(3)1462-369-631

(4)60506-19460÷35

(5)23072÷412×65

(6)184×38+116×38-11300

(7)(79691-46354)÷629

(8)325÷13×(266-250)

(9)74+100÷5×3

(10)(440-280)×(300-260)

1.95.6*18+0.4*18

=(95.6+0.4)*18

=96*18

=1728

2.907*99+907

=907*(99+1)

=907*100

=90700

3.0.6*143-0.6*43

=0.6*(143-43)

=0.6*100

=60

4.6.5*8+3.5*8-47

=(6.5+3.5)*8-47

=80-47

=33

5.14*2.25+14*3.75

=(2.25+3.75)*14

=6*14

=84

6.3.5*0.8+5.5*0.8+0.8

=(3.5+5.5+1)*0.8

=10*0.8

=8

7.7.28-1.5*2.4+2.72

=(7.28+2.72)-1.5*2.4

=10-3.6

=6.4

8.0.125*45.6*0.8

=0.125*0.8*45.6

=4.56

9.98*1.5+10.2*15

=9.8*15+10.2*15

=(9.8+10.2)*15

=20*15

=300

10.76*3.7+76*6.3

=76*(3.7+6.3)

=76*10

=760

158+262+138

375+219+381+225

5001-247-1021-232

(181+2564)+2719

378+44+114+242+222

276+228+353+219

(375+1034)+(966+125)

(2130+783+270)+1017

99+999+9999+99999

7755-(2187+755)

2214+638+286

3065-738-1065

899+344

2357-183-317-357

2365-1086-214

497-299

2370+1995

3999+498

1883-398

12×25

75×24

138×25×4

(13×125)×(3×8)

(12+24+80)×50

704×25

25×32×125

32×(25+125)

88×125

102×76

58×98

178×101-178

84×36+64×84

75×99+2×75

83×102-83×2

98×199

123×18-123×3+85×123

50×(34×4)×3

25×(24+16)

178×99+178

79×42+79+79×57

7300÷25÷4

8100÷4÷75

16800÷120

30100÷2100

32000÷400

49700÷700

1248÷24

3150÷15

4800÷25

21500÷125

以上内容就是为大家分享的 初中数学题库及答案(初一数学易错题100道) 相关知识,希望对您有所帮助,如果还想搜索其他问题,请收藏本网站或点击搜索更多问题。

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。

控制面板

您好,欢迎到访网站!
  查看权限

最新留言