七年级数学上册(七年级数学上册期末必考题型)

访客2023-09-27 20:15:21103

今天给各位分享七年级数学上册的知识,其中也会对七年级数学上册期末必考题型进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

七年级数学上册知识点汇总

一个没有几分诗人气的数学家永远成不了一个完全的数学家.下面给大家带来一些关于 七年级数学 上册知识点汇总,希望对大家有所帮助。

1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b).

2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式.

3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加

号的和的形式.

4、加减混合运算的 方法 和步骤

(1)将减法统一成加法,并写成省略加号的和的形式;

(2)运用加法的交换律和结合律,简化运算.

5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0.

6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.

7、倒数:乘积是1的两个数互为倒数.

8、有理数的除法法则

(1)除以一个数等于乘以这个数的倒数;

(2)两数相除,同号得正,异号得负,并把绝对值相除;

(3)0除以任何一个不等于零的数,都得0.

9、乘方的有关概念

(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂).

(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数.

10、科学计数法

把一个大于10的数记成a×10n的形式,其中0≤a10,n是正数,这种计数法叫做科学计数法.

11、有理数的混合运算顺序

(1)先算乘方,再算乘除,最后算加减;

(2)同级运算,按照从左至右的顺序依次进行;

(3)如果有括号,就先算小括号,再算中括号,然后算大括号.

12、近似数:与实际很接近的数.

13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个

近似数精确到那一位.

14、计算器的组成:计算器的面板由 显示器 和按键组成.

第3章整式的加减

1、用字母表示数后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普

遍意义.

2、用字母表示数后,字母的取值要根据实际情景来确定.

3、用运算符号把数或表示数的字母连接而成的式子,称为代数式.

4、单独一个数或单独一个字母也是代数式.

5、列代数式的实质就是把文字语言转化为符号语言.

6、列代数式的一般方法有:

(1)抓住关键词,由关键词确定相应的运算符号;

(2)理清运算顺序,一般是先读的先算,必要时添上括号;

(3)较复杂的数量关系,可分段处理;

(4)根据实际问题中的基本数量关系或公式列代数式.

7、用数值代替代数式中的字母,按照代数式中的运算关系计算得出结果,叫做代数式的值.

8、求代数式的值的步骤:先代入,再求值.

9、数与字母的乘积所组成的代数式叫做单项式,单独的数或字母也是单项式.

10、单项式中的数字因数叫做这个单项式的系数,所有字母指数之和叫做这个单项式的次数.

11、几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母

的项叫做常数项.

12、在多项式里,最高次项的次数就是这个多项式的次数.

13、单项式和多项式统称为整式.

14、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个

字母的降幂排列.

15、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个

字母的升幂排列.

16、所含字母相同,并且相同字母的指数也相等的项叫做同类项,所有的常数项都是同类项.

17、把多项式中的同类项合并成一项,叫做合并同类项.

18、合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

19、去括号法则:

(1)括号前面是“+”,把括号和它前面的“+”号去掉,括号里各项不改变正负号;

(2)括号前面是“—”,把括号和它前面的“—”号去掉,括号里各项改变正负号;

20、添括号法则:

(1)所添括号前面是“+”号,括到括号里的各项不改变正负号;

(2)所添括号前面是“—”号,括到括号里的各项改变正负号;

21、整式加减的一般步骤:先去括号,再合并同类项.

第4章生活中的立体图形

1、生活中的立体图形有很多,常见的有柱体、锥体和球体,其中柱体分为圆柱和棱柱,锥体分

为圆锥和棱锥

2、从正面、上面和侧面(左面或右面)三个不同的方向看一个物体,然后描绘出三幅所看到的

图,即视图.

3、从正面看到的图形,称为主视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称

为侧视图,依观看的方向不同,有左视图和右视图.

4、单一的规则的立体图形的三视图,如果主视图和侧视图是三角形,一般和锥体有关,可根据

俯视图是圆形或n边形,可以判断是圆锥或,n棱锥;对于主视图和侧视图是长方形的,一般和柱体有关,再观察俯视图是圆形或n边形,可以判断是圆柱或n棱柱.

5、圆柱的侧面展开图是矩形(长方形或正方形),圆锥的侧面展开图是扇形.

6、同一个立体图形,按不同的方式展开得到的平面展开图是不同的.

7、圆是由曲面围成的封闭图形;多边形是由线段围成的封闭图形.

8、在多边形中,最基本的图形是三角形.

9、两点之间线段最短.

10、经过两点有1条直线,并且只有1条直线,即两点确定一条直线.

11、线段的长短比较有两种方法:一种是度量的方法;一种是叠合的方法.

12、把一条线段分成两条相等线段的点,叫做这条线段的中点.

13、角是由两条有公共端点的射线组成的图形,角也可以看做是一条射线绕着它的端点旋转

而成的图形.

14、角的表示方法

(1)当顶点处只有一个角时,用一个大写字母表示;

(2)用三个大写字母表示,注意顶点字母必须写在中间;

(3)用希腊字母或阿拉伯数字表示.

15、角的大小比较:

(1)“形的比较”——叠合法;

(2)“数的比较”——度量法.

16、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的

角平分线.

17、两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),

就说这两个角互为补角.

18、同角(或等角)的余角相等;同角(或等角)的补角相等.

第5章相交线与平行线

1、对顶角相等.

2、在同一平面内,经过直线外或直线上一点,有且只有1条直线与已知直线垂直.

3、直线外一点与直线上各点连接的所有线段中,垂线段最短.

4、两条直线被第三条直线所截,位于截线的同侧,被截直线的同一方的两个角叫做同位角;位

于截线的两侧,被截直线之间的两个角叫做内错角;位于截线的同侧,被截直线之间的两个角叫做同旁内角.

5、在同一平面内不相交的两条直线叫做平行线.

6、经过直线外一点,有1条直线与这条直线平行.

7、如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

8、平行线的判定方法

(1)同位角相等,两直线平行;

(2)内错角相等,两直线平行;

(3)同旁内角互补,两直线平行;

(4)如果有两条直线与第三条直线平行,那么这两条直线也互相平行;

(5)在同一平面内,垂直于同一条直线的两条直线互相平行.

9、平行线的性质

(1)两直线平行,同位角相等;

(2)两直线平行,内错角相等;

(3)两直线平行,同旁内角互补.

第1章走进数学世界

1、数学伴我们成长,测量、称重、计算等都与数学有关.

2、数学与现实生活密切联系,人类离不开数学.

3、人人都能学好数学.

第2章有理数

1、相反意义的量:像向东和向西、零上和零下、收入和支出、升高和降低、买入和卖出等都表

示具有相反意义的量.

2、正数和负数

(1)正数都大于零;

(2)在正数前面加上一个“—”号的数叫做负数,负数都小于零;

(3)0既不是正数也不是负数,它是正数和负数的分界点.

3、有理数

(4)有理数:正数和分数统称为有理数;

(5)整数包括正整数、0、负整数;

(6)分数包括正分数、负分数.

4、有理数的分类:0和正数统称为非负数,0和负数统称为非正数.

5、数轴的概念:规定了正方向、原点和单位长度的直线叫做数轴.

6、有理数的大小比较

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

7、相反数的意义

(1)代数意义:只有符号不同的两个数称互为相反数,零的相反数是0;

(2)几何意义:在数轴上表示互为相反数的两个点分别位于原点的两侧,且与原点的距离相等.

8、相反数的表示方法:数a的相反数是-a,这里的a可以表示任何一个数.

9、绝对值的意义

(1)几何意义:把数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|;

(2)代数意义:一个正数的绝对值等于本身,零的绝对值是0,一个负数的绝对值等于相反数.

10、绝对值的非负性:对于任何有理数a,都有|a|≥0.

11、两个负数的大小比较法则:两个负数,绝对值大的反而小.

12、有理数大小的比较方法

(1)利用数轴:在数轴上表示两个数,右边的数总比左边的数大;

(2)利用比较法则:正数都大于零,负数都小于零,正数大于负数.

两个正数,绝对值大的数大;两个负数绝对值大的数反而小.

13、有理数的加法法则

(1)同号两数相加,取加数的符号,并把绝对值相加;

(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值;

(3)互为相反数的两个数相加得0;

(4)一个数同0相加仍得这个数.

14、在进行有理数的加法运算时,应分两步:首先,判断符号;然后,再计算绝对值.

15、有理数的加法运算律

(1)交换律:两个数相加,交换加数的位置,和不变,即:a+b=b+a;(用字母表示)

(2)结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变,即:(a+b)+c=a+(b+c).(用字母表示)

16、运用加法运算律的技巧:正负结合;凑整结合;相反数结合;同分母结合;整分结合.

七年级数学上册知识点汇总相关 文章 :

★ 初一数学上册知识点归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册重点知识整理

★ 初一数学上册基本概念汇总与学习方法

★ 七年级上册数学知识点总结三篇

★ 七年级数学知识点整理大全

★ 初中七年级数学知识点归纳整理

★ 初一数学有理数知识点

★ 七年级上册数学全册概念总结复习

★ 初一年级上册数学的21个热门知识点

七年级上册数学知识点归纳整理

数学的知识点是很重要的,下面我就大家整理一下七年级上册数学 知识点 归纳整理,仅供参考。

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

“圆和扇形”知识点

圆的周长和弧长

1.圆的周长

2.弧长

圆和扇形面积

1.圆的面积

2.扇形的面积

重要程度--四颗星。弧长与扇形面积的计算公式需要熟记,这一部分的知识点会链接到初三下学期“正多边形与圆”,会有一些组合图形的阴影面积需要计算,这里也会是孩子学习的一个难点。

平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、 判定两条直线平行的方法:

(1) 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

以上就是我为大家整理的七年级上册数学知识点归纳整理。

人教版七年级上册数学知识点整理

马上寒假了,为了帮助大家更好的学习初中数学。下面我整理了人教版七年级上册数学知识点,供大家参考。

一、整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.整式:①单项式②多项式。

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

7.合并同类项法则:系数相加,字母与字母的指数不变。

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

9.整式的加减:

一找:(划线);

二“+”:(务必用+号开始合并);

三合:(合并)。

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

二、一元一次方程

1.等式:用“=”号连接而成的式子叫等式。

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3.方程:含未知数的等式,叫方程。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;

注意:“方程的解就能代入”。

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

8.一元一次方程解法的一般步骤:

化简方程----------分数基本性质。

去分母----------同乘(不漏乘)最简公分母。

去括号----------注意符号变化。

移项----------变号(留下靠前)。

合并同类项--------合并后符号。

系数化为1---------除前面。

9.列一元一次方程解应用题:

(1)读题分析法:…………多用于“和,差,倍,分问题”。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:…………多用于“行程问题”。

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

三、绝对值

1、绝对值的几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2、绝对值的代数定义

(1)一个正数的绝对值是它本身;

(2)一个负数的绝对值是它的相反数;

(3)0的绝对值是0。

3、可用字母表示为

(1)如果a0,那么|a|=a;

(2)如果a0,那么|a|=-a;

(3)如果a=0,那么|a|=0。

4、可归纳为

(1)a≥0,═|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)

(2)a≤0,═|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

5、绝对值的性质

任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即

(1)0的绝对值是0;绝对值是0的数是0.即:a=0═|a|=0;

(2)一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

(3)任何数的绝对值都不小于原数。即:|a|≥a;

(4)绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a0),则x=±a;

(5)互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

(6)绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

(7)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)。

6、有理数大小的比较

(1)利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;

(2)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。

四、代数式

1、代数式:用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。单独的一个数或一个字母也是代数式。

2、单项式:表示数与字母的乘积的代数式叫单项式。单独的一个数或一个字母也是代数式。

3、单项式的系数:单项式中的数字因数。

4、单项式的次数:一个单项式中,所有字母的指数和。

5、多项式:

几个单项式的和叫做多项式。每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。常数项的次数为0。

6、整式:

单项式和多项式统称为整式。

注意:分母上含有字母的不是整式。

7、代数式书写规范:

(1)数与字母、字母与字母中的乘号可以省略不写或用“·”表示,并把数字放到字母前;

(2)出现除式时,用分数表示;

(3)带分数与字母相乘时,带分数要化成假分数;

(4)若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。

七年级数学上册知识点总结

;     七年级数学上册知识点总结(通用8篇)

      总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以促使我们思考,为此要我们写一份总结。那么如何把总结写出新花样呢?下面是小编为大家整理的七年级数学上册知识点总结(通用8篇),欢迎大家分享。

七年级数学上册知识点总结 篇1

数轴

      1、数轴的概念

      规定了原点,正方向,单位长度的直线叫做数轴。

      注意:(1)数轴是一条向两端无限延伸的直线;(2)原点、正方向、单位长度是数轴的三要素,三者缺一不

      可;(3)同一数轴上的单位长度要统一;(4)数轴的三要素都是根据实际需要规定的。

      2、数轴上的点与有理数的关系

      (1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

      (2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

      3、利用数轴表示两数大小

      (1)在数轴上数的大小比较,右边的数总比左边的数大;

      (2)正数都大于0,负数都小于0,正数大于负数;

      (3)两个负数比较,距离原点远的数比距离原点近的数小。

      4、数轴上特殊的(小)数

      (1)最小的自然数是0,无的自然数;

      (2)最小的正整数是1,无的正整数;

      (3)的负整数是-1,无最小的负整数

      5、a可以表示什么数

      (1)a0表示a是正数;反之,a是正数,则a0;

      (2)a

      (3)a=0表示a是0;反之,a是0,,则a=0

七年级数学上册知识点总结 篇2

第一章 有理数

      (一)正负数

      1、正数:大于0的数。

      2、负数:小于0的数。

      3、0即不是正数也不是负数。

      4、正数大于0,负数小于0,正数大于负数。

      (二)有理数

      1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

      2、整数:正整数、0、负整数,统称整数。

      3、分数:正分数、负分数。

      (三)数轴

      1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

      2、数轴的三要素:原点、正方向、单位长度。

      3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

      4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。

      (四)有理数的加减法

      1、先定符号,再算绝对值。

      2、加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

      3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

      4、加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

      5、 ab = a +(b) 减去一个数,等于加这个数的相反数。

      (五)有理数乘法(先定积的符号,再定积的大小)

      1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

      2、乘积是1的两个数互为倒数。

      3、乘法交换律:ab= ba

      4、乘法结合律:(ab)c = a (b c)

      5、乘法分配律:a(b +c)= a b+ ac

      (六)有理数除法

      1、先将除法化成乘法,然后定符号,最后求结果。

      2、除以一个不等于0的数,等于乘这个数的倒数。

      3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

      (七)乘方

      1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

      2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

      (八)有理数的加减乘除混合运算法则

      1、先乘方,再乘除,最后加减。

      2、同级运算,从左到右进行。

      3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

      (九)科学记数法、近似数、有效数字。

第二章 整式

      (一)整式

      1、整式:单项式和多项式的统称叫整式。

      2、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

      3、系数:一个单项式中,数字因数叫做这个单项式的系数。

      4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

      5、多项式:几个单项式的和叫做多项式。

      6、项:组成多项式的每个单项式叫做多项式的项。

      7、常数项:不含字母的项叫做常数项。

      8、多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

      9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

      10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

      (二)整式加减

      整式加减运算时,如果遇到括号先去括号,再合并同类项。

      1、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

      如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

      2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

      合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

第三章 一元一次方程

      分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

      (一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。

      (二)一元一次方程:

      1、一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

      2、解:求出的方程中未知数的值叫做方程的解。

      (二)等式的性质

      1、等式两边加(或减)同一个数(或式子),结果仍相等。

      如果a= b,那么a± c= b± c

      2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

      如果a= b,那么a c= b c;

      如果a= b,(c0),那么a ?Mc = b ?M c。

      (三)解方程的步骤

      解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。

      1、去分母:把系数化成整数。

      2、去括号

      3、移项:把等式一边的某项变号后移到另一边。

      4、合并同类项

      5、系数化为1

第四章 图形认识初步

      一、图形认识初步

      1、几何图形:把从实物中抽象出来的各种图形的统称。

      2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。

      3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。

      4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

      5、点,线,面,体

      1图形是由点,线,面构成的。

      2线与线相交得点,面与面相交得线。

      3点动成线,线动成面,面动成体。

      二、直线、线段、射线

      1、线段:线段有两个端点。

      2、射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。

      3、直线:将线段的两端无限延长就形成了直线。直线没有端点。

      4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。

      5、相交:两条直线有一个公共点时,称这两条直线相交。

      6、两条直线相交有一个公共点,这个公共点叫交点。

      7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。

      8、线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)

      9、距离:连接两点间的线段的长度,叫做这两点的距离。

      三、角

      1、角:有公共端点的两条射线组成的图形叫做角。

      2、角的度量单位:度、分、秒。

      3、角的度量与表示:

      1角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

      2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。

      4、角的比较:

      1角也可以看成是由一条射线绕着他的端点旋转而成的。

      2平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。

      3平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

      4工具:量角器、三角尺、经纬仪。

      5、余角和补角

      1余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。

      2补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。

      3补角的性质:等角的补角相等。

      4余角的性质:等角的余角相等。

七年级数学上册知识点总结 篇3

      1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)

      2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。

      3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠。

      4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若1分母中不含有字母,2式子中含有加、减运算关系,也不是单项式、

      单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)

      单项数的次数:是指单项式中所有字母的指数的和、(注意指数1)

      5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式、特别注意多项式的项包括它前面的性质符号、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

七年级上册数学书内容有哪些?

七年级上册数学书重要内容:

(一)有理数。

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。

(3)相反数:相反数是一个数学术语,指值相等,正负号相反的两个数互为相反数。

(4)值:值是指一个数在数轴上所对应点到原点的距离。正数的值是它本身,负数的值是它的相反数;0的值是0,两个负数,值大的反而小。

(5)有理数的加减法。

同号相加,到相同符号,并把值相加。异号相加,取值大的加数的符号,并用较大的值减去较小的值。

(6)有理数的乘法。

两数相乘,同号得正,异号得负,并把值相乘。

任何数与0相乘,积为0. 例:0×1=0

(7)有理数的除法。除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把值相除。0除

以任何一个不为0的数,都得0。

(8)有理数的乘方。求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

(二)整式

(1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

②多项式:由若干个单项式相加组成的代数式叫做多项式。

③系数:单项式中所有字母的指数的和叫做它的次数。

④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。

⑤项:组成多项式的每个单项式叫做多项式的项。

⑥多项式的次数:多项式中,次数比较高的项的次数叫做这个多项式的次数。

⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(2)整式加减。

整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。

(三)一元一次方程

(1)定义:

一元一次方程指只含有一个未知数、未知数的比较高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(2)解一元一次方程的步骤:

①去分母:把系数化成整数。

②去括号。

③移项:把等式一边的某项变号后移到另一边。

④合并同类项。

⑤系数化为1。

(四)几何图形。

(1)几何图形。

将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。

(2)立体图形。

立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。

分类:柱体、锥体、旋转体、截面体等。

(3)平面图形。

平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。

分类:圆形、多边形、弓形、多弧形。

(4)点、线、面、体。

点:点是比较简单的形,是几何图形比较基本的组成部分。点是空间中只有位置,没有大小的图形。

线:线是由个点集合成的图形。

面:在空间中,到两点距离相同的点的轨迹。

体:多面体是指四个或四个以上多边形所围成的立体。

(5)直线、射线、线段。

直线:直线由个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。

射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。

线段:是指直线上两点间的有限部分(包括两个端点) ,有别于直线、射线。

(6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。

(7)余角:两角之和为90°则两角互为余角,等角的余角相等。

(8)补角:两角之和为180°则两角互为补角,等角的补角相等。

《七年级数学》是2010年龙门书局出版的图书,主编是洪林旺。本书收录了全国各省高考状元的各个学科的学习心得和方法技巧。

数学课本(mathematics textbook),数学学科教学用书。小学数学课本注意在加强基础知识教学的同时,培养学生的计算能力、初步的逻辑思维能力和空间观念,以及解决简单实际问题的能力。中学数学课本包括代数、平面几何、立体几何等内容。

七年级上册数学知识点总结三篇

学习是每个一个学生的职责,而学习的动力是靠自己的梦想,也可以这样说没有自己的梦想就是对自己的一种不责任的表现,也就和人失走肉没啥两样,只是改变命运,同时知识也不是也不是随意的摘取。要通过自己的努力,要把我自己生命的钥匙。以下是我为您整理的七年级上册数学知识点 总结 三篇,供大家学习参考。

   七年级上册数学知识点总结篇一

   单项式与多项式

1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)

2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。

单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

   整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

   七年级上册数学知识点总结篇二

第一单元有理数

1.1正数和负数

以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义

1.2有理数

1.2.1有理数

正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴

规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数

只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法

1.3.1有理数的加法

有理数的加法法则:

⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a

三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)

1.3.2有理数的减法

有理数的减法可以转化为加法来进行。

有理数减法法则:

减去一个数,等于加这个数的相反数。

a-b=a+(-b)

1.4有理数的乘除法

1.4.1有理数的乘法

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

两个数相乘,交换因数的位置,积相等。

ab=ba

三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)c=a(bc)

一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(b+c)=ab+ac

数字与字母相乘的书写规范:

⑴数字与字母相乘,乘号要省略,或用“”

⑵数字与字母相乘,当系数是1或-1时,1要省略不写。

⑶带分数与字母相乘,带分数应当化成假分数。

用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。

一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即

ax+bx=(a+b)x

上式中x是字母因数,a与b分别是ax与bx这两项的系数。

去括号法则:

括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。

1.4.2有理数的除法

有理数除法法则:

除以一个不等于0的数,等于乘这个数的倒数。

a÷b=a〃1

b(b≠0)

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于

0的数,都得0。

因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

1.5有理数的乘方

1.5.1乘方

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

负数的奇次幂是负数,负数的偶次幂是正数。

正数的任何次幂都是正数,0的任何正整数次幂都是0。

有理数混合运算的运算顺序:

⑴先乘方,再乘除,最后加减;

⑵同极运算,从左到右进行;

⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行

1.5.2科学记数法

把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。

用科学记数法表示一个n位整数,其中10的指数是n-1。

1.5.3近似数和有效数字

接近实际数目,但与实际数目还有差别的数叫做近似数。

精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。

对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。

七年级上册数学知识点总结篇三

整式的加减

一、代数式

1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

   二、整式

1、单项式:

(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列

(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:

(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:

a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:

a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.

b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

图形的初步认识

一、立体图形与平面图形

1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。

2、长方形、正方形、三角形、圆等都是平面图形。

3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。

二、点和线

1、经过两点有一条直线,并且只有一条直线。

2、两点之间线段最短。

3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。

4、把线段向一方无限延伸所形成的图形叫做射线。

三、角

1、角是由两条有公共端点的射线组成的图形。

2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。

3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。

4、度、分、秒是常用的角的度量单位。

把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。

四、角的比较

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。

五、余角和补角

1、如果两个角的和等于90(直角),就说这两个角互为余角。

2、如果两个角的和等于180(平角),就说这两个角互为补角。

3、等角的补角相等。

4、等角的余角相等。

六、相交线

1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

2、注意:

⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。

⑶垂直是相交的特殊情况。

⑷垂直的记法:a⊥b,AB⊥CD。

3、画已知直线的垂线有无数条。

4、过一点有且只有一条直线与已知直线垂直。

5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。

七、平行线

1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、判定两条直线平行的 方法 :

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5、平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

相关 文章 :

1. 初一数学复习三篇

2. 初一上册数学知识点归纳整理

3. 初一数学上册知识点归纳

4. 初一数学课本知识点总结

以上内容就是为大家分享的 七年级数学上册(七年级数学上册期末必考题型) 相关知识,希望对您有所帮助,如果还想搜索其他问题,请收藏本网站或点击搜索更多问题。

免责声明:本文仅代表文章作者的个人观点,与本站无关。其原创性、真实性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容文字的真实性、完整性和原创性本站不作任何保证或承诺,请读者仅作参考,并自行核实相关内容。

控制面板

您好,欢迎到访网站!
  查看权限

最新留言