0是无理数吗(0是有理数吗)
无理数是很有趣的,小数点一直延续下去,但是整个数总是小于一个固定值,这不是很尴尬吗?更令人惊讶的是,这些数字是如何与画在一个平面上的圆联系在一起的,是的,我+说的就是π。这里我们将用半页纸来证明这个数字π的无理性。
几千年来,人类文明就已经知道π及其与周长和圆面积的关系;尽管π的估算从3到3.12再到3.14等等,但它的无理性却只有约翰·海因里希·兰伯特发现并证明了-(德语:,法语:让-亨利·兰伯特;1728年8月26日至1777年9月25日),他是1760年的瑞士博物学家,后来被其他著名的数学家如厄米特、卡特莱特、布尔巴基和拉茨科维奇所研究。
然而,当这些证明被认为是高水平的数学时,Ivan Niven博士的一篇论文用简单易懂的工具,用古老的矛盾方法将其缩短在半页纸里,让我们来看看。
首先考虑π是有理数,π可表示为π = a/b,其中a和b为整数且b≠0。让我们再考虑一个函数:
我们可以将n从1变换到任意数n,得到一个多项式F(x):
现在,回到f(x),很明显当n!与f(x)相乘,分母为1,因此对于任意x, f(x)的结果是一个整数。所以
现在,如果你考虑右边,(a -b.x)^n中x的最低次幂是0,在a^n中,当它乘以x^n时,结果中x的最低次幂是n,最高次幂是n+n = 2n。
如果对f(x)求导,当x = 0或(a - b.x) = 0 => x = a/b = π(如前所述)时,结果总是0,因为分子中所有项都有x。现在我们对(F ' (x) sin x - F(x) cos x})关于x求导。
经过一些简化,我们得到的结果是:这里将把它作为一个有趣而简单的题目留给大家。
你可能知道,积分是微分的逆运算,反之亦然。因此,如果对f(x) sin x积分,也就是对{f ' (x) sin x - f(x) cos x}求导后的结果,我们得到的结果是{f ' (x) sin x - f(x) cos x} !在0到π的范围内积分相同,我们得到:
在此,π= a / b。如前所述,F+ F是一个整数,可以任意次数地将f微分,因为x = a / b =π和x = 0的结果是整数。
但由于f(x)是一个多项式函数,当0 < x < π时,f(x). sinx的最小值为0,而x的值为f(x)。通过对sinx = 0求导可以得到sinx = 0的最大值,接下来如果将值代入,就得到了该函数值在上述极限中的一个上界。
很好,所以这个积分是正的,但是对于一个非常大的n它就不成立了,当n的值更大时,它的上界趋向于0。
换句话说,对于n的任意值的积分在n的更大值处断开,所以有两种可能性,要么是积分过程出错,要么是π不能写成a/b。但如果你用多种方法来验证积分过程,结果总是一样的,要么就是π≠a/b,要么就是π无理数!
虽然现在有许多人已经记住了成千上万个π的数字,但只有少数人知道如何证明它的无理性。尽管有很多对π无理性的证明,甚至有一个从未存在过的法国数学家布尔巴基的证明,但伊凡·尼文的证明碰巧是最简洁的。
Tags:
相关推荐
- 湖北三江航天建筑工程有限公司以 60925996.99 元中标红林总装厂房二期工程
- 江西省天久地矿建设集团有限公司中标龙里县城区排涝工程勘测
- 北京中和联信供应链管理有限公司中标山地农业科技创新基地植物表型研究设备采购及伴随服务(重新招标)项目,中标金额 7764000 元
- 霸州市佳理鑫五金制品厂中标新乐市第三中学采购项目
- 河北泽辉市政工程有限公司等为路南区乡村振兴环境综合治理项目(一期)一标段工程总承包(EPC)(二次)中标候选人
- 河北石府建设工程有限公司10110736.93元中标高铁片区景观提升项目施工三标段
- 中基恒源建设有限公司中标高铁片区(含新华商业广场)景观提升项目施工五标段,中标价 13430852.95 元
- 九芝堂换帅完成工商变更
- 山西建设投资集团有限公司为大宁县水果供应链基地运营配套建设项目施工(二次)第一中标候选人
- 浙江宁慈建设工程有限公司以97028327元中标慈溪市城市生活垃圾收转运一体化建设项目(一期)